跳转到主要内容
IELTS Recent Mock Tests Volume 6

IELTS Recent Mock Tests Volume 6

3.8
(7,038 评分人数)
  • 发布时间: 15 Nov 2018
  • 模考人次: 2,554,255

正确答案:

Part 1: Question 1 - 14
  • 1 E
  • 2 A
  • 3 E
  • 4 G
  • 5 B
  • 6 TRUE
  • 7 TRUE
  • 8 NOT GIVEN
  • 9 local time
  • 10 2.8 seconds
  • 11 lubrication
  • 12 (a/the) sextant
  • 13 angles
  • 14 marine chronometer
Part 2: Question 15 - 27
  • 15 ix
  • 16 iv
  • 17 iii
  • 18 v
  • 19 i
  • 20 vi
  • 21 ii
  • 22 hot season/dry season
  • 23 four months
  • 24 water resources
  • 25 body weight
  • 26 dehydration
  • 27 growth
Part 3: Question 28 - 40
  • 28 F
  • 29 C
  • 30 G
  • 31 B
  • 32 F
  • 33 E
  • 34 FALSE
  • 35 NOT GIVEN
  • 36 FALSE
  • 37 NOT GIVEN
  • 38 C
  • 39 A
  • 40 D

排行榜:

#用户得分时间
Mom Bunnarith 9.016:00
Hung Pham Van Quoc 9.016:22
Revati Bulbule 9.016:23
4 Irtaza Rizvi 9.016:25
5 nguyễn tú anh 9.017:10
6 Kiệt Trần 9.017:27
7 Trộn Trái Đất 9.017:44
8 my phạm 9.018:50
9 Ekaterina Soboleva 9.018:55
10 Chang Mai 9.019:03
Tips for improving your ielts score
剑桥雅思8听力原文-TEST1

剑桥雅思8听力原文-TEST1

3.0
(2 评分人数)
862
24 Oct 2023

详细试卷答案解析:

Part 1: Questions 1-14

Questions 1-5

Questions 6-8

Questions 9-14

Complete the sentences below.

Choose NO MORE THAN TWO WORDS AND/OR A NUMBER from the passage for each answer.

Write your answers in boxes 9-14 on your answer sheet.

Sailors were able to use the position of the Sun to calculate 9

An invention that could win the competition would lose no more than 10 every day.

John and James Harrison’s clock worked accurately without 11

Harrison’s main competitor’s invention was known as 12

Hadley’s instrument can use 13 to make a calculation of location of ships or planes.

The modem version of Harrison’s invention is called the 14

  • 9 Answer: local time

    Keywords in Questions

    Similar words in Passage

    Q9. Sailors were able to use the position of the Sun to calculate 9 .


    A comparison with the local time (easily identified by checking the position of the Sun) would indicate the time difference between the home time and the local time, and thus the distance from home was obtained.

    NOTE

    - The word to fill in the blank should be a noun, as it follows a verb.

    - Keywords in Q9 are “position of the Sun”, “calculate”.

    - Take a look at second sentence of paragraph C, it contains keyword “position of the Sun”, “identified” is similar to “calculate”.

    - According to that sentence, sailors were able to use the position of the Sun to calculate local time. So the answer here is “local time”.

  • 10 Answer: 2.8 seconds

    Keywords in Questions

    Similar words in Passage

    Q10. An invention that could win the competition would lose no more than 10 every day.

    If timekeeper was the answer (and there could be other proposed solutions, since the money wasn’t only offered for timekeeper), then the error of the required timekeeping for achieving this goal needed to be within 2.8 seconds a day, which was considered impossible for any clock or watch at sea, even when they were in their finest conditions.

    NOTE

    - The word to fill in the blank should be a noun which indicates number.

    - Keywords in Q10 are “invention”, “win”, “no more than”, “everyday”.

    - Take a look at second sentence of paragraph D, it contains similar words to keywords. “a day” is equal to “everyday”, “timekeeper” is equal to “invention”, “achieving this goal” is equal to “win the competition”, “within” is equal to “no more than”.

    - According to the sentence, the timekeeper would lose no more than 2.8 seconds everyday. So the answer here is “2.8 seconds”.

  • 11 Answer: lubrication

    Keywords in Questions

    Similar words in Passage

    Q11. John and James Harrison’s clock worked accurately without 11 .


    This award, worth about £2 million today, inspired the self-taught Yorkshire carpenter John Harrison to attempt a design for a practical marine clock. In the later stage of his early career, he worked alongside his younger brother James. The first big project of theirs was to build a turret clock for the stables at Brockelsby Park, which was revolutionary because it required no lubrication.

    NOTE

    - The word to fill in the blank should be a noun as it follows a preposition.

    - Keywords in Q11 are “John and James Harrison”, “clock”.

    - Take a look at three first sentences of paragraph E, it mentions to John and James Harrison and their clock. According to those sentences, the clock required no lubrication. “no” is equal to “without”. So the answer here is “lubrication”.

  • 12 Answer: (a/the) sextant

    Keywords in Questions

    Similar words in Passage

    Q12. Harrison’s main competitor’s invention was known as 12 .


    Harrison had a principal contestant for the tempting prize at that time, an English mathematician called John Hadley, who developed sextant. The sextant is the tool that people adopt to measure angles, such as the one between the Sun and the horizon, for a calculation of the location of ships or planes. In addition, his invention is significant since it can help determine longitude.

    NOTE

    - The word to fill in the blank should be a noun as it follows “as”

    - Keywords in Q12 are “invention”, “competitor”.

    - Take a look at first sentence of paragraph F, it contains similar words to keywords. “contestant” is exactly “competitor”. And the “invention” is mentioned as “sextant”. So the answer here is “a/the sextant”.

  • 13 Answer: angles

    Keywords in Questions

    Similar words in Passage

    Q13. Hadley’s instrument can use 13 to make a calculation of location of ships or planes.


    The sextant is the tool that people adopt to measure angles, such as the one between the Sun and the horizon, for a calculation of the location of ships or planes.

    NOTE

    - The word to fill in the blank shoud be a noun as it follows a verb.

    - Keywords in Q13 are “Hadley’s instrument”, “calculation of the location of ships or planes”.

    - Take a look at second sentence of paragraph F, it contains the keywords. “sextant” is equal to “Hadley’s instrument”.

    - According to the sentence, the sextant use “angles” to make a calculation. So the answer here is “angles”.

  • 14 Answer: marine chronometer

    Keywords in Questions

    Similar words in Passage

    Q14. The modem version of Harrison’s invention is called the _____

    One wonderful figure in the history is the Lancastrian Thomas Earnshaw, who created the ultimate form of chronometer escapement—the spring detent escapement—and made the final decision on format and productions system for the marine chronometer, which turns it into a genuine modem commercial product, as well as a safe and pragmatic way of navigation at sea over the next century and half.

    NOTE

    - The word to fill in the blank should be a noun as it follows a verb.

    - Keywords in Q14 are “modem”, “Harrison’s invention”.

    - Take a look at second sentence of paragraph G, it contains keyword “modem”, “commercial product” is equal to “version”. And the modem version of Harrison’s invention named “marine chronometer”. So the answer here is “marine chronometer”.

READING PASSAGE 1

You should spend about 20 minutes on Questions 1-14, which are based on Reading Passage 1 below.

Timekeeper: Invention of Marine Chronometer

A Up to the middle of the 18th century, the navigators were still unable to exactly identify the position at sea, so they might face a great number of risks such as the shipwreck or running out of supplies before arriving at the destination. Knowing one’s position on the earth requires two simple but essential coordinates, one of which is the longitude.

B The longitude is a term that can be used to measure the distance that one has covered from one’s home to another place around the world without the limitations of naturally occurring baseline like the equator. To determine longitude, navigators had no choice but to measure the angle with the naval sextant between Moon centre and a specific star— lunar distance—along with the height of both heavenly bodies. Together with the nautical almanac, Greenwich Mean Time (GMT) was determined, which could be adopted to calculate longitude because one hour in GMT means 15-degree longitude. Unfortunately, this approach laid great reliance on the weather conditions, which brought great inconvenience to the crew members. Therefore, another method was proposed, that is, the time difference between the home time and the local time served for the measurement. Theoretically, knowing the longitude position was quite simple, even for the people in the middle of the sea with no land in sight. The key element for calculating the distance travelled was to know, at the very moment, the accurate home time. But the greatest problem is: how can a sailor know the home time at sea?

C The simple and again obvious answer is that one takes an accurate clock with him, which he sets to the home time before leaving. A comparison with the local time (easily identified by checking the position of the Sun) would indicate the time difference between the home time and the local time, and thus the distance from home was obtained. The truth was that nobody in the 18th century had ever managed to create a clock that could endure the violent shaking of a ship and the fluctuating temperature while still maintaining the accuracy of time for navigation.

D After 1714, as an attempt to find a solution to the problem, the British government offered a tremendous amount of £20,000, which were to be managed by the magnificently named ‘Board of Longitude’. If timekeeper was the answer (and there could be other proposed solutions, since the money wasn’t only offered for timekeeper), then the error of the required timekeeping for achieving this goal needed to be within 2.8 seconds a day, which was considered impossible for any clock or watch at sea, even when they were in their finest conditions.

E This award, worth about £2 million today, inspired the self-taught Yorkshire carpenter John Harrison to attempt a design for a practical marine clock. In the later stage of his early career, he worked alongside his younger brother James. The first big project of theirs was to build a turret clock for the stables at Brockelsby Park, which was revolutionary because it required no lubrication. Harrison designed a marine clock in 1730, and he travelled to London in seek of financial aid. He explained his ideas to Edmond Halley, the Astronomer Royal, who then introduced him to George Graham, Britain’s first-class clockmaker. Graham provided him with financial aid for his early-stage work on sea clocks. It took Harrison five years to build Harrison Number One or HI. Later, he sought the improvement from alternate design and produced H4 with the giant clock appearance. Remarkable as it was, the Board of Longitude wouldn’t grant him the prize for some time until it was adequately satisfied.

F Harrison had a principal contestant for the tempting prize at that time, an English mathematician called John Hadley, who developed the sextant. The sextant is the tool that people adopt to measure angles, such as the one between the Sun and the horizon, for a calculation of the location of ships or planes. In addition, his invention is significant since it can help determine longitude.

G Most chronometer forerunners of that particular generation were English, but that doesn’t mean every achievement was made by them. One wonderful figure in the history is the Lancastrian Thomas Earnshaw, who created the ultimate form of chronometer escapement—the spring detent escapement—and made the final decision on format and productions system for the marine chronometer, which turns it into a genuine modem commercial product, as well as a safe and pragmatic way of navigation at sea over the next century and half.

Looking for Strategy to Solve this Test?Watch Here

雅思真题解析-阅读真题3

雅思专家 “Jamie” 老师将详细讲解如何定位关键词、寻找同义词、扫描信息,以解决一些最常见的问题类型。课程将深化考生对文章信息的理解,提升阅读技巧。

1.99 USD
~ 14.47 RMB

随时随地观看所有
雅思真题解析视频系列

0.99 USD
~ 7.20 RMB

只购买
此课程

Want to watch the rest of the class?

Purchase an All-Access Pass to get access to this premium class and 200+ more on IOT. Or start with This Single Class today

9节 (56m 29s)

课程介绍 00:01:20
1-5 题 00:09:06
6-8 题 00:05:41
9-14 题 00:06:06
15-21 题 00:08:16
22-27 题 00:04:35
28-33 题 00:08:19
34-37 题 00:05:47
38-40 题 00:07:19

有话要说:

Notifications
您的信息